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U P L A N D S / W E T L A N D S  H A B I T A T  M A P P I N G  P R O J E C T  

INTRODUCTION 
Alabama’s coastal landscape and the natural resources, habitats, and species that inhabit the area are 
important components of an interconnected system that make up local, regional, and Gulf-wide 
ecosystems. The Mobile Bay watershed encompasses an incredible diversity of habitats such as marine 
and estuarine ecosystems, terrestrial wetlands, and uplands that have a significant influence on the water 
quality of the bay and surrounding waters. Alabama’s coastal habitats have undergone significant 
changes over time due to a multitude of factors, including population growth, the spread of urban 
development, land conversion, pollution, invasive species colonization, hydrological modifications, and 
repeated natural and anthropogenic disasters. The resulting patterns and stressors have produced a 
substantial impact on coastal ecosystems in both the terrestrial and marine environments. In addition to 
stresses imposed by local impacts, coastal habitats that are located on the downstream portion of 
drainages have been subjected to the cumulative impacts of degenerative landuse practices that occur in 
entire watersheds1. In order to assess changes and the impacts incurred, habitat data is needed to allow 
resource managers and decision makers to better plan for restoration and conservation activities that will 
uplift and protect our coastal resources. 
 
The Mobile Bay National Estuary Program (MBNEP) is a federally authorized National Program 
responsible for promoting wise stewardship in the Mobile Bay estuarine system and developing a 
comprehensive conservation and management plan (CCMP). The 2013-2018 CCMP included two 
restoration goals 1) improve trends in water quality of priority fishery nursery areas; and 2) improve 
ecosystem function and resilience through protection, restoration, and conservation of habitats. In order 
to implement CCMP goals, MBNEP needed an updated inventory of wetlands and upland coastal 
habitats in Mobile and Baldwin counties in Alabama to help assess water quality trends, identify 
degraded habitats, and recommend corrective actions.  The goal of the project was to generate an 
updated habitat classification map covering wetland and upland coastal habitats throughout Mobile and 
Baldwin counties (approximately 3,671 square miles).  
 
IMAGE ACQUISITION  
The Radiance Team coordinated the acquisition of new 4-band imagery over Baldwin and Mobile 
Counties. Quantum Spatial (QSI) used a Leica ADS 100, which has a 4 channel (RGB & IR) multi-
spectral capability. Project specific flights were conducted over a two-month period (January 17, 2016- 
February 10, 2016). Nine aircraft lifts were completed.    
 

                                                 
1 Shirley, L. J., & Battaglia, L. L. (2006). Assessing vegetation change in coastal landscapes of the northern Gulf of 
Mexico. Wetlands, 26(4), 1057-1070 
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Figure 1. QSI Flight Frame Coverage and Flight Lines. 
 
ORTHORECTIFICATION 
Following flight acquisition, QSI processed and verified the data for proper project area coverage and 
data accuracy and post-processed the raw imagery in two steps. First, the radiometric correction was 
applied to compensate for temperature, aperture effects, etc. Second, geometric corrections were applied 
to correct for lens distortion and tilt. Stereo models validated horizontal and vertical accuracy before the 
raw data was archived. Hardcopy and digital format recordings delineated the nadir point on each 
exposure for validating that project accuracy standards are met. A full description of image processing 
procedures is included in Appendix A.  
 
Aerotriangulation (AT) was performed using Z/I Systems Image Station Automatic Triangulation 
(ISAT) software to minimize dependence on ground control by extending and supplementing the 
airborne and base station control. An aero triangulation report outlines all the relevant information 
pertaining to the accuracy of the control data (Appendix A). The report includes summary of aerial 
triangulation results; descriptions of equipment, procedures, and computer software used; Summary 
Remote Monitoring System errors for bundle adjustment, photographic measurement residuals, or strip 
tie point residuals and misclosures at control/check points; significant misfits encountered at control 
points and procedures taken to analyze and rectify such misfits; a listing of all misclosures at ground 
control points with and without use of checkpoints; computer printout of the final adjusted analytical 
triangulation solution to horizontal and vertical ground control. The report also contains the final 
coordinates for all ground control points, pass points, and checkpoints, and identification of all points 
that were included in the initial solution and subsequently discarded, with an explanation of the reasons 
for being discarded.  
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A complete differential rectification removed any image displacement due to topographic relief and 
camera tip/tilt. This ensured that that each pixel in the image was positioned into its correct horizontal 
ground location (X-Y coordinate value). QSI used OrthoPro software for radiometric tone matching, 
cropping, and feathering, to create a seamless image mosaic with invisible joint lines. The final outputs 
from the post processing were high resolution, orthro-ready, panchromatic, color, and color infrared 
images covering Baldwin and Mobile counties. QSI delivered the imagery within 45 working days. A 
final digital orthoimage was provided on an external hard drive in the following coordinate system UTM 
Zone 16 NAD 83, GRS 1980 Spheriod. In accordance with FGCD Wetlands Mapping Standard, the 
imagery acquired was color infrared, 1m resolution (1:12,000 scale), cloud-free and leaf off, with a 
winter tasking acquisition window. The final product delivered was in UTM Zone 16 NAD83, and was 
delivered to MBNEP Program Manager at the time (Ms. Amy Newbold) via portable hard drive in April 
2016.  
 

 
Figure 2.  Leaf-Off Mosaic Collected by Quantum Spatial (Flown Jan-Feb 2016). 

 
FIELD SAMPLING   
Field personnel visited field sites during the leaf-off imagery acquisition window and used a vegetation 
inventory protocol to ensure consistency across all sampling locations. Apple iPad tablets were 
preloaded with ESRI’s Collector App, a mobile application used to capture field data and log site 
information matching the Cowardin wetland classification scheme2 and a modified Anderson scheme for 
uplands3 in custom-made data forms that integrate directly with ESRI ArcGIS.  

                                                 
2 Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E. T. (1979). Classification of wetlands and deepwater habitats of the United States. 
US Department of the Interior, US Fish and Wildlife Service. 
3 Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government 
Printing Office. 
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To ensure location accuracy, high-performance GPS receiver Bad Elf GPS Pro Plus units were tethered 
to the tablets to increase geographic positioning to 2.5 meters. Collector for ArcGIS has the capability to 
provide ancillary map data such as existing habitat maps, soil data, topographic maps, DEM data, recent 
imagery, and cadastral maps as the backdrop to aid field personnel in the decision-making process. 
Photos were taken at each site with the iPad and linked with the site location through Collector.  A total 
of 300 sample sites were visited, each with a consensual observation. The observations were roughly 
half in each county, and about half of each county was sampled in the north and about half in the south 
to ensure wide coverage of the samples. We employed a stratified random sampling approach to ensure 
an unbiased data collection and provide a good distribution of sampling sites across all class categories. 
This method assigned a specific number of locations to each class in proportion to the size or 
significance of the class. Although the stratified random approach was the primary site selection method, 
a systematic component was required to realistically meet goals. Large amounts of private land exist in 
both counties, which hindered the ability of field personnel to visit each randomly selected site. An 
additional selection process identify points that were within 200 meters of an accessible roadway. 
 

 
Figure 3. Field Locations in the Project Study Area. 
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METHODOLOGY: IMAGE CLASSIFICATION AND FEATURE EXTRACTION  
The Radiance Team established an image classification workflow using the latest version of ERDAS 
IMAGINE.  Traditional pixel-based land cover classifications are unsupervised, supervised, or a 
combination of both and these classifications do not often incorporate spatial context in the 
classification. In contrast, object based image analysis (OBIA) groups the pixels with similar data value 
properties (i.e., radiance/reflectance, texture, etc.) into clumps known as objects. Classifications then can 
be done by object, instead of pixel by pixel, and can potentially provide higher mapping accuracy.  
 

Figure 5.  Classification Workflow. 

Figure 4. Field personnel visiting field sites and collecting training samples at all sampling locations. 
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OBJECT ORIENTED FEATURE EXTRACTION: ERDAS IMAGINE OBJECTIVE 
We used Hexagon Geospatial’s ERDAS Imagine Objective to develop an object-based image analysis 
model for classification and feature extraction.  The IMAGINE Objective extension provides a step-wise 
modelling environment for object-oriented classification. The object-oriented approach emulates human 
visual processing by analyzing the data, not just on a pixel-by-pixel basis, but also by looking at 
contiguous object-based measures such as shape, size, and texture. The modelling environment also 
includes vector processing operators that produce polygon data, which allowed us to directly export 
results to ESRI ArcGIS with minimal processing.   
 
Feature Models formed the basis for the extraction with the following series of “Process nodes.”  It is 
worth noting that the Objective extension has additional and alternative process nodes, however, our 
feature extraction methodology only included the following steps: 

1)  Raster Pixel Processor (RPP):   
We used Single Feature Probability (SFP) to perform pixel based classification.  SFP is a pixel cue that 
computes a probability metric (a number between 0 and 1) for each pixel of the input image based on its 
likeness to the training samples.  The features to be extracted (e.g. forest) were selected by the user as 
training samples; and based on the pixel values of the training samples, the SFP cue assigned probability 
values to each pixel. Higher probability values were assigned to those pixels whose values were similar 
to ones of pixels in the training samples. Lower probability values were assigned to pixels whose values 
were significantly different from the values of pixels in the training samples.  
 
The training samples were carefully selected and care was taken to not include any background pixels 
(i.e. pixels other than the pixels that are similar to the training pixels are considered background pixels). 
Our image analysts used their interpretation skills to select sample areas for training.  Sample size was 
limited to 512 x 512 pixels each.  In all, we collected over 1,500 training samples for each major 
classification group - all the way to the sub-class level of the classification scheme. 
 
During the training phase, candidate samples for the subject class were submitted to IMAGINE 
Objective for statistical analysis.  Then, based on the pixel cue, each pixel was evaluated to measure 
how closely they resembled the training pixels. The output of this step was a pixel probability layer in 
which each pixel value represented the probability that it was the in the class of interest. The values 
were represented as a normalized percentage from 0 - 1. 
 
Figure 6 on the next page is a snapshot of the raster pixel probability for agriculture habitat class in 
Baldwin County. In this greyscale image, brighter pixels have higher probability values (i.e., there is 
greater certainty that the pixel belongs to the target Agriculture land class) while darker pixels have 
lower probability values. 
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2) Raster Object Creators (ROC):  
The Raster Object Creator is used to identify and group contiguous segments of pixels with similar 
characteristics. Radiance selected the Lambda Schedule Segmentation process.  With Lambda Schedule 
Segmentation, the Pixel Probability Layer input is used to compute the pixel probability zonal mean of 
each segment. Then, the zonal mean is used as the value of the segment’s Pixel Probability attribute.  
Lambda Schedule is valuable because it is a bottom-up merging algorithm.  It also considers spectral 
content, as well as the segment's texture, size, and shape for merging decisions. Furthermore, it provides 
some control over the pixel-segment ratio, as well as minimum and maximum segment size constraints. 
 
Pixels that are spatially connected and have similar probability values are grouped in a single segment. 
This step performs segmentation on the raster image specified and outputs a Raster Object Layer. Output 
from the Raster Objects Operator contains pixels that are grouped as raster objects and have the 
associated pixel probability zonal mean as a single common attribute. The user can govern some 
characteristics of the raster objects such as minimum, maximum, and average size as well as the 

Figure 6. Snapshot of the raster pixel probability (RPP) for agriculture lands in Baldwin County.  
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influence that size, shape, and texture of the objects plays in the merging pixel decisions. For each 
segmentation process, experimentation was evaluated to determine ideal characteristics for the land 
cover type. 
 
Image segmentation classification employs properties of both spectral value classification and photo-
interpretation elements such as texture, size, and shape for merging decisions. The object-oriented 
approach, or OBIA, partitions raster images into segments based on similarity in pixel spectral values 
and location clustering. Pixels that are spatially connected and have similar values are grouped in a 
single segment. Image segmentation performs segmentations on the image using edge detection. This 
method segments the image pixels into objects and utilizes the texture information of the object rather 
than using only spectral information relied upon by pixel-based methods.  
 
3) Raster Object Operators (ROO):  
We utilized raster object operators such as “Probability Filter” to create thresholds that segments must 
meet to be considered part of the class being evaluated. Size Filters also helped to minimize segments 
that were not large enough to be considered relevant for final classification. In general, we only accepted 
candidate segments that met a .85 probability per target class. Figure 7 shows the raster objects (colored 
purple) that have been filtered based on probability thresholding.  The objects overlay the same RPP 
image from step 1.  

 
 

Figure 7. Snapshot of raster objects (purple) overlaying the RPP  
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4) Raster to Vector Conversion (RVC):  
The primary challenge with the use of IMAGINE Objective is the inability of the software extension to 
utilize system resources beyond that of a typical desktop computer.  Objective only runs in a single 
thread so adding CPUs to a machine running an Objective model does not increase performance.  
Moreover, most Objective algorithms are implemented in such a way that their memory usage is not 
optimized to use more available RAM on the computer and instead in a way that they can be run 
successfully on a computer which meets the minimum computer specification requirement, so more 
memory does not improve Objective performance either. 
 
Hexagon Erdas software engineers had not conducted extensive testing with Objective models running 
on image files of the size that were collected for this project prior to releasing the software for public 
purchase.  Our team found that the optimum image file size for Objective processes (specifically the 
segmentation step) is between 5 – 10 GBs.  The MBNEP study area was greater than 100GB in total and 
crashed the software each time a process was executed on the entire image file.  Therefore, we were 
forced to divide the imagery into 10 regions to accommodate the software’s processing deficiencies 
(Figure 8A-C).  While this was handled easily enough, it required 10 different model executions to 
capture a single class across the entire study area. Statistical characteristics for the training data are 
computed for all the samples, regardless of input image, so there were not issues with regional 
differences but the schedule impact was significant. This, however, resulted in longer processing times 
and a more complicated workflow, resulting in the project getting behind schedule (i.e. The 
classification process had to run 10 times across 10 quads, instead of running it once across one entire 
image). 

 
While there are parameters whose relative weights can be adjusted in the Lambda Schedule 
Segmentation process, the segment borders cannot be directly influenced.  Those decisions are driven 

Figure 8. Imagery subset to an acceptable processing size for ERDAS objective classification. 
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exclusively by the algorithms. The Segmentation routine will occasionally create segments that overlap 
an obvious boundary between unique land classes.  Where obvious and practical, we have manually 
edited the output polygons and changed the classification to appropriately attribute a distinct area.  
However, this is one area of inaccuracy that is inherent in an object-oriented classification.  On the 
positive side, the non-spectral characteristics often led to precise segment boundary decisions. 
  
Many of the same uncertainties that exist with traditional supervised classification methodologies apply 
to object-oriented classifications, as well. Namely, there will always be some degree of confusion 
between spectrally similar land classes. For example, we noticed initial confusion between Evergreen 
Forest and Evergreen Scrub/Shrub classes and between Range-Pasture and Agriculture classes. 

WETLANDS DEFINITION AND WATER REGIME MODIFIERS 
Spectral and object-based cues existed for delineating the wetland areas and segregating them from 
uplands.  However, initial trials to perform this routine as an exclusive function for wetland definition 
had a poor overall performance. Therefore, we used a set of geoprocessing functions to define the 
wetland areas.  These models provided the additional benefit of informing the classification water 
regime modifiers. 
 
Without current soils data which may have contributed to the wetland definition model (note: the 
concurrent soil assessment project data was not available during habitat classification), wetness indices 
were viewed as a valuable alternative. We generated a number of band-ratio and elevation derived 
products to assist in the definition of wetland areas.  Normalized Difference Vegetation Index (NDVI) 
and Normalized Difference Wetness Index (NDWI) were computed across the study area and served to 
inform areas where water may be present yet not visible through vegetative canopy. NDWI, especially, 
provides insight into the water content of vegetation indicating areas of more abundant soil moisture.  
We also used elevation-derived products to identify low-lying areas and hydrologic drainage patterns.  
Most notably, we generated a Topographic Wetness Index (TWI), which can be a good indicator of soil 
conditions.  It is derived by calculating a slope raster, the upslope contributing area, and other geometric 
functions. Flow accumulation numbers in flat areas, such as the Mobile Bay region, are known to be 
quite large, and therefore, TWI is not as useful in these environments. Out team found TWI to be 
informative but it did not have the utility that we had hoped for several reasons.  First, the most readily 
available elevation data that covers the entire study area were USGS 10m Digital Elevation Model 
(DEM) raster scenes.  The scenes over Mobile Bay had defects that made some areas incalculable. In 
addition, the spatial resolution of these products was much coarser than the 1m imagery collected for the 
project.  Therefore, the precision these elevation derived datasets provided did not adequately meet the 
standard of this effort. Our project team also focused on National Hydrography Datasets (NHD) 
published by USGS.  These datasets are the most up-to-date and detailed hydrography dataset for the 
nation.  Proximity to the stream network was considered as part of the overall wetland definition model.   
 
Once we had defined potential wetland areas through band-ratios, elevation-derived wetness products, 
and proximity to known hydrologic features, we used an object-oriented segmentation approach to 
detecting differences in the land cover.  This approach worked quite well in delineating landscape 
changes indicative of seasonally flooded, semi-permanently flooded, and saturated areas.  However, in 
some areas, there was too much ambiguity or land cover changes were too subtle to discern the 
boundary between wetland and upland areas.  This was especially true for discriminating upland 
forested areas from temporarily flooded forested wetlands.  Where the model had difficulty with 
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delineating a wetland extent, we consulted ancillary sources such as the National Wetlands Inventory 
boundaries. 
 
Once our wetland areas were defined, we again computed NDVI and NDWI zonal means to make 
determinations of water regime modifiers.  This method worked well in areas with evergreen vegetation 
cover (Forested or Scrub/Shrub) or wetland classes without vegetative canopy (Emergent or Aquatic 
Bed).  In areas of dense deciduous cover, more traditional image interpretation methods were used to 
apply a water regime modifier. Special modifiers were added based solely on image interpretation 
methods. 

PIXEL BASED CLASSIFICATION 
In addition to conducting an object-oriented classification, we also conducted a “traditional” pixel-based 
classification approach. The intent was to use the pixel-based classification in areas where confusion 
existed with the object-based approach and reduce uncertainty.   
 
Pixel-based classification relies on the spectral reflectance values of individual pixels in an image to 
discriminate different classes. This frequently used technique has the capability to detect fine-level 
differences in reflectance values and is a commonly used technique. Although the acquired image data 
for this project has a high spatial resolution (1 m/pixel), the spectral limitations (4 bands) were 
anticipated to diminish the effectiveness of pixel-based classification. More importantly, many of the 
classes mapped are based on the context in which a pixel is found, such as pixels, representing trees 
found in the various urban and forest classes. Context is an important element of object-oriented 
classification; but is completely omitted from pixel-based classifications. 
 
Various supervised pixel-based classifications were performed, with once class always dominating a 
resulting classification. Two improvements to the classification approach were made by including 
multiple related classes for each desired end class (such as urban-concrete, urban-asphalt, etc.) and by 
adding an NDVI as a layer in the classification. However, the spectral similarity of some features, such 
as sand and concrete, and the large measured spectral range of other features, such as water, precluded 
obtaining a desirable result from the pixel-based classification approach (Figure 9). 
 
On the other hand, the object-oriented approach involved the segmentation of image data into objects at 
multiple scale levels. Objects were assigned class rules using spectral signatures, shape and contextual 
relationships. The rules were then used as a basis for the classification of the imagery. The supervised 
pixel-based classification involved the selection of training areas and a classification using maximum 
likelihood algorithm. Accuracy assessments of both classifications were undertaken, and a comparison 
of the results showed better overall accuracy of the object-oriented classification over the pixel-based 
classification. Because the object-based classification showed better results for classifying high 
resolution imagery than the pixel-based methods, we chose not to incorporate the results of the pixel-
based classification.  
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Figure 8. Example of pixel-based classification results. 

 

NORMALIZED DIFFERENCE VEGETATIVE INDEX (NDVI) 
When using ERDAS Imagine Objective’s object-oriented feature extraction models (outlined 
previously), our team recognized a limitation when classifying open water.  Segmentation is intended to 
group similar pixels and the size of these segments are influenced by user defined minimums, 
maximums and averages. However, the tidally influenced estuarine areas, such as those shown in Figure 
7, as well as shallow inland water bodies presented challenges to the segmentation routines. With 
intricate channels and meandering water, the segmentation tended to “over group,” leading to segments 
with dissimilar classes.  If we reduced the segment size, the number of overall segments ballooned and 
became unmanageable from a processing perspective. These issues were compounded in shallow water 
areas where the bottom is visible or suspended sediment can confuse the classifier.  Therefore, we also 
used a Normalized Difference Vegetative Index (NDVI) across the study area to define areas of where 
water exists.   
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NDVI is a commonly used remote sending technique often applied to enhance the detection of 
live/healthy vegetation. NDVI is calculated by deriving a ratio between the red and near infrared spectral 
bands:  

 Where red and NIR stand for the spectral reflectance measurements acquired in the red 
(visible) and near-infrared regions, respectively.  Free standing water will have a rather low reflectance 
in both spectral bands and thus result in very low positive or even slightly negative NDVI values. These 
low values help to discriminate freestanding water from other classes and therefore presented a finer 
resolution water class than the segmentation process used for land classes (Figure 9). 
 

 
Figure 9. Estuarine environment with tidal creeks and embankments. 
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Figure 10. NDVI for comprehensive water classification. 

 

HABITAT CLASSIFICATION TOOL  
Classification of objects to the modifier level required manual interpretation with the assistance of 
ancillary data such as DEM derivatives and soils data, where available.  Additionally, each habitat object 
needed to be attributed across the entire classification hierarchy and end up with a final classification 
code that represents each level in the hierarchy. To streamline the process of attribute entry, the Radiance 
Team developed the Habitat Classification Script (HCS) to populate polygon attributes in an automated 
fashion (Figure 12).  Attribute selections developed to mirror the Cowardin and upland classification 
schemes and enforce logic rules specific to the scheme. The primary requirement of the HCS was to 
ensure the highest level of accuracy attainable for polygon classification within the ArcMap 
environment. Second to accuracy, the script was likewise intended to optimize specialist workflow 
wherever possible. 

1)  Accuracy Standard 
To ensure classification accuracy, the HCS served as a medium between the specialist and the database, 
which held the final classification data. The HCS allowed the specialist to construct the classification for 
an individual polygon or groups of polygons incrementally, beginning with the System level 
classification and proceeding hierarchically to the bottommost Modifier level. At each stage of 
classification construction, HCS allowed the specialist to append more nuanced classification levels with 
the restriction that all additions must strictly adhere to the Cowardin et al., 1979 Wetlands Classification 
and Deepwater Habitats of the United States schema. These standards were re-enforced recursively upon 
every change to a classification that was being constructed, providing a cascading safeguard that staved 
errors, which may have been made with manual, human entry. 
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In addition to cascading standard reinforcement, HCS was programmed to automatically populate the 
habitat code corresponding to each classification level for every possible valid classification. This 
allowed for significant time reduction on part of the specialist and ensured both consistency and 
accuracy in the final dataset, going so far as to ensure that the ordering of habitat codes at the modifier 
level would remain consistent for any third party wishing to manipulate this data in the future. 

The preceding accuracy assurance features were implemented by default and could not be disabled or 
circumvented. In addition to these features, HCS implemented auxiliary, user-controlled features that 
contributed to the overall accuracy standard. These features included safeguards against writing empty 
fields, or “None” values to the database, an option to ensure classifications were completed to the 
modifier level, options which guarded the capability to classify all polygons in a shapefile with a single 
command, and a descriptive system that managed error logging and warnings. 

2)  Work-flow Optimization 
HCS directly integrated with the ArcMap environment using Esri’s ArcPy library. Through this 
interface, HCS was able to directly acquire data from ArcMap, responding to real-time shapefile and 
feature class manipulations made by the ArcMap user. This data was queried, analyzed, and verified by 
the HCS to ensure Cowardin et al 1979 conformance and to employ the configuration system, neither of 
which could be achieved with ArcMap alone. After the proper manipulations had taken place, HCS was 
then able to re-integrate with ArcMap to write the classification information to the final database and expose 
the changes to the ArcMap session. In this way, the user was able to seamlessly use the facilities of 
ArcMap, with project-specific features tailored for this project. 

FIGURE 11. Habitat classification script GUI. 
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HCS was designed with a per-user configuration system, which could store popular classifications that 
the user chose to save for future implementation with a single click, as well as the capability to recall 
which auxiliary accuracy assurance features and layers a user had enabled the last time the script was 
used. Other workflow enhancements included window layering with ArcMap that made the script 
available to the user during simultaneous ArcMap sessions, the ability to share window focus with 
ArcMap in order to switch between applications without the need to restart the script after every 
classification, and auto-population of short and long-name habitat classification.  
 
Two classification schemes were used in this study: (a) A simple wetland versus upland discrimination, 
(b) Wetlands classified to the Cowardin class level (Cowardin et al., 1974). The habitat classes were to 
be labeled according to a hierarchical classification scheme using a combination of Anderson (1976) 
and Cowardin (1979) classification systems. The Cowardin scheme was used for all wetland features 
and included classifications for System, Class, Subclass, and water regime modifiers.  All wetland 
features were identified at the feature level to 98% accuracy and a minimum of 85% accuracy at the 
attribute level with a Targeted Mapping Unit of 0.5 acres, as stated by the FGDC Wetland Mapping 
Standard. The feature level refers to the broad identification of wetland vs upland. Attribute accuracy 
refers to thematic information associated with each mapped feature. A map of the final habitat 
classifications is shown on the following page in Figure 13.  
 
ACCURACY ASSESSMENT  
Once the final compiled geodatabase of vector-based features began to take shape, we conducted an 
accuracy assessment of the classification.  We performed this assessment with ESRI’s ArcGIS platform.  
ArcGIS has a set of tools for performing accuracy assessments of feature data whereas other software 
systems such as ERDAS IMAGINE only allow for classification of thematic raster data. 
 
We utilized an ArcGIS tool suite (Spatial Analyst > Classification and Segmentation) that created a 
random set of points across the study area, allowed us to ‘ground truth’ those points, and compared them 
to the classification at each area.  We chose a stratified random sampling strategy that generates a set of 
points that is randomly distributed throughout each class, where each class has a number of points 
proportional to its relative areas.  We began by generating 700 random points.  We also appended an 
additional 300 points that validated by the field surveys conducted in 2016.  This field survey data was 
not used as training samples for the classifiers so it served well as confirmed control data for the 
accuracy assessment.  That yielded 1000 points of ground truth to compare to the classification.  Upon 
review, we decided to remove approximately 100 points for various reasons such as, the feature where 
the field data was collected or control point or was placed was so small that it did not meet the one-half 
acre precision requirement, or the feature was ambiguous and could not be appropriately ground 
validated.  We also eliminated 50 points within the Mobile Bay because the accuracy assessment was 
weighted too heavily on the water (due to relative area). The water classes such as Unconsolidated 
Bottom performed extremely well so the removal of so many points over open water was completely 
appropriate. 
 
Classification errors occur when a feature belonging to one class is assigned to another class. Errors of 
omission (Producer’s Accuracy) occur when a feature is left out of the class being evaluated; errors of 
commission (User’s Accuracy) occur when a feature is incorrectly included in the category being 
evaluated. An error of omission in one category will be counted as an error in commission in another 
category.  
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After running the initial accuracy assessment, we identified a number of areas where the classifiers had 
trouble discriminating between classes.  We used this information to go back and revise the classifiers 
by providing additional training data or running separate classification models.  Each time, we would 
generate new random accuracy assessment points.  Ultimately, the classification improved to point that 
it met the accuracy tolerance set out for this project of 85% at the class level.  The final accuracy 
assessment report is included as Figure 14. It should not be surprising that the greatest difficulty was 
discriminating between spectrally and textually similar classes. For example, Upland Range (only 
47.62% Producer’s Accuracy) is often confused for Agriculture, and Scrub/Shrub (only 57.58%  

 
Figure 12. Final Habitat Classification Results for Baldwin and Mobile Counties, Al. 
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Producer’s Accuracy) is often confused for Forest. These were the most error prone classes. Of notable 
success were exceptionally high accuracy rates of open water classes (Unconsolidated Bottom) and low 
rates of confusion between Wetland Forest and Upland Forest classes, which was anticipated 
beforehand.  The final accuracy report generated an observed accuracy 89.86%.  The Kappa Coefficient 
was 88.55%. The Kappa coefficient expresses the proportionate reduction in error generated by a 
classification process compared with the error of a completely random classification. For example, the 
Kappa statistic cited here implies that the classification process is avoiding 88.55% of the errors that a 
completely random classification would generate. 

DATA ORGANIZATION 
The final upland/wetland habitat dataset was stored in an ESRI file geodatabase and included one 
integrated feature class.  Upon project completion, the final geodatabase and associated reports were 
delivered to MBNEP Outreach Coordinator, Ms. Kelley Barfoot, on an external drive.  
 
The final deliverables included following: 
 

1. Digital copy of Final Report (.pdf) 
2. Quantum Spatial’s (QSI) Image Acquisition Final Report (.pdf) 
3. Quantum Spatial’s (QSI) Appendices (Flight Logs) (.pdf) 
4. ESRI Geodatabase and associated metadata (.gdb)  
5. Accuracy assessment points (feature class) 
6. Accuracy assessment table (ESRI table) 
7. 4-band imagery (original TIF images and MrSID mosaic)  

 
 
 
KEYWORDS: wetlands; uplands; topographic; object based image analysis; segmentation, habitat 
classification, Cowardin; coastal restoration 
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Estuarine | 
Intertidal | Scrub-
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Estuarine | 
Intertidal | 
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Shore

Lacustrine | 
Limnetic | 

Aquatic Bed

Lacustrine | 
Limnetic | 

Unconsolidated 
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Lacustrine | 
Littoral| Aquatic 

Bed

Lacustrine | 
Littoral| 

Unconsolidated 
Bottom

Marine | Subtidal 
| Unconsolidated 

Bottom

Marine | Subtidal 
| Unconsolidated 

Shore
Palustrine | 
Aquatic Bed

Palustrine | 
Emergent

Palustrine | 
Forest

Palustrine | Scrub-
Shrub

Palustrine | 
Unconsolidated 

Bottom

Palustrine | 
Unconsolidated 

Shore

Riverine | Tidal | 
Unconsolidated 

Bottom

Riverine | Lower 
Perennial | 

Unconsolidated 
Bottom

Riverine | Lower 
Perennial | 

Unconsolidated 
Shore

Upland | 
Agriculture Upland | Barren Upland | Forest Upland | Range

Upland | Scrub-
Shrub Upland | Urban Total User's Accuracy Kappa

Estuarine | Subtidal | 
Unconsolidated Bottom 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 78 93.59% 0

Estuarine | Intertidal | Aquatic Bed 0 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 62.50% 0

Estuarine | Intertidal | Emergent 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 100.00% 0

Estuarine | Intertidal | Scrub-Shrub 0 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 90.91% 0

Estuarine | Intertidal | 
Unconsolidated Shore 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 100.00% 0

Lacustrine | Limnetic | Aquatic Bed 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 100.00% 0

Lacustrine | Limnetic | 
Unconsolidated Bottom 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 100.00% 0

Lacustrine | Littoral| Aquatic Bed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00% 0

Lacustrine | Littoral| 
Unconsolidated Bottom 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 100.00% 0

Marine | Subtidal | Unconsolidated 
Bottom 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 100.00% 0

Marine | Subtidal | Unconsolidated 
Shore 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 100.00% 0

Palustrine | Aquatic Bed 0 0 0 0 0 0 0 1 0 0 0 16 2 0 0 0 0 0 0 0 0 0 0 0 0 0 19 84.21% 0

Palustrine | Emergent 1 0 0 0 0 0 0 0 0 0 0 1 21 1 0 0 0 0 0 0 0 0 0 0 0 0 24 87.50% 0

Palustrine | Forest 0 0 0 0 0 0 0 0 0 0 0 2 1 81 1 1 0 0 1 0 0 0 3 0 0 0 90 90.00% 0

Palustrine | Scrub-Shrub 0 0 0 0 0 0 0 1 0 0 0 0 0 1 8 0 0 0 0 0 0 0 0 0 0 0 10 80.00% 0

Palustrine | Unconsolidated 
Bottom 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 35 97.14% 0

Palustrine | Unconsolidated Shore 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 100.00% 0

Riverine | Tidal | Unconsolidated 
Bottom 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 15 100.00% 0

Riverine | Lower Perennial | 
Unconsolidated Bottom 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 15 100.00% 0

Riverine | Lower Perennial | 
Unconsolidated Shore 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 100.00% 0

Riverine | Intermittent | Stream 
Bed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55 0 0 10 4 3 72 76.39% 0

Upland | Agriculture 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 27 0 0 0 0 29 93.10% 0

Upland | Barren 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 1 1 227 5 8 4 252 90.08% 0

Upland | Forest 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 20 1 1 24 83.33% 0

Upland | Scrub-Shrub 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 19 0 22 86.36% 0

Upland | Urban 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 2 1 5 1 78 90 86.67% 0
Total 75 5 27 10 10 7 16 2 14 23 8 19 25 90 10 36 2 15 19 2 57 31 231 42 33 88 897 0.00% 0
Producer's Accuracy 97.33% 100.00% 85.19% 100.00% 90.00% 100.00% 100.00% 0.00% 100.00% 100.00% 87.50% 84.21% 84.00% 90.00% 80.00% 94.44% 50.00% 100.00% 78.95% 100.00% 96.49% 87.10% 98.27% 47.62% 57.58% 88.64% 89.86% 0
Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 88.55%

FIGURE 13. ACCURACY ASSESSSMENT CONFUSION MATRIX 
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