TIER 2 SEAGRASS MONITORING 2015

Prepared for

Mobile Bay National Estuary Program 118 North Royal Street #601 Mobile, Alabama 36602

Alabama DCNR State Lands Division Coastal Section 31115 – 5 Rivers Boulevard Spanish Fort, AL 36527

Prepared by

Barry A. Vittor & Associates, Inc. 8060 Cottage Hill Road Mobile, Alabama 36695

July 2016

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	METHODS	1
	2.1 Selection of Tier 2 Stations	1
	2.2 Assessment Methods	1
3.0	RESULTS	2
4.0	CONCLUSIONS	3
5.0	ACKNOWLEDGEMENTS	3
6.0	LITERATURE CITED	3

APPENDIX A – Station Location Maps

APPENDIX B – Water Quality, Light, and Vegetation Data

1.0 INTRODUCTION

The Mobile Bay National Estuary Program (MBNEP) and Alabama Department of Conservation and Natural Resources State Lands Division (SLD) funded the study entitled "Mapping of Submerged Aquatic Vegetation in Mobile Bay and Adjacent Waters of Coastal Alabama in 2015", administered through a Dauphin Island Sea Lab contract (P.O. 37670). In addition to the landscape-scale mapping (Tier 1), habitat condition assessments (Tier 2) were conducted at a subset of field locations following evaluation methods described by Neckles et al. (2012). The Neckles et al. (2012) methodology evaluates seagrass habitat during peak summer biomass, including for water quality parameters, light availability, and quadrat-based assessment of seagrass percent cover and canopy height. The tiered monitoring program is suggested as a method to detect and predict changes in seagrass systems relative to multi-scale conservation objectives.

2.0 METHODS

2.1 Selection of Tier 2 Stations

Shoal grass (*Halodule wrightii*), widgeon grass (*Ruppia maritima*), and mixed beds of both species occur in lower Perdido Bay and the Mississippi Sound areas of coastal Alabama. For the Tier 2 assessments, a total of 12 stations in Perdido Bay and 8 stations in Mississippi Sound were surveyed in late August and early September 2015. Because concurrent aerial imagery was not available at the time of project planning, ArcGIS 10.3 was used to generate 55 random GPS points within polygons mapped as continuous shoalgrass or continuous shoalgrass/widgeon grass in the 2002 and 2008-09 MBNEP/SLD surveys. The stations were then numbered using a random number generator.

In the Perdido Bay area, Stations 1 through 12 were designated as Tier 2 assessment locations, pending field investigation. In Mississippi Sound, all random MS stations were visited starting at the westernmost locations and moving eastward until eight stations were assessed. The pre-plotted station locations were visited using GPS navigation. If seagrass was present, bed patchiness was visually assessed and, if necessary, a quadrat was used to confirm whether vegetation density met the Tier 2 minimum requirements of 50% bottom coverage. Additionally, the location had to have a large enough grassbed area to accommodate sampling four quadrats, one each off of the bow, stern, port, and starboard sides of the survey vessel. If a location did not meet the minimum requirements, the next numbered station was visited and similarly assessed. Appendix A contains maps showing the Tier 2 survey locations in Perdido Bay (Figure 1) and Mississippi Sound (Figure 2). All Perdido Bay stations had shoalgrass, whereas Sound stations had shoalgrass or widgeon grass, or a mix of the two species.

2.2 Assessment Methods

At each station, measurements were made for water quality, depth, light availability, and vegetation metrics. Water quality and depth measurements were collected at the bottom

and surface using a YSI 600XLM-V2 multiparameter sonde unit equipped with a 650model data logger. Water quality parameters included temperature (C°), salinity (ppt), pH, and dissolved oxygen concentration (mg/L).

Light transparency data were collected at 0.5-m intervals beginning subsurface depth (~3-6 cm), using LI-COR sensors and a LI-1400-model data logger. Light measurements were recorded at each depth using a combination of subsurface and deck sensors. A LI-193 spherical (4π) sensor was used to collect subsurface light measurements. A LI-190 quantum (deck) sensor was used to record incident light above the water surface simultaneously with subsurface measurements to correct for changes in incident light levels caused by external factors such as cloud cover. The deck sensor readings were used to provide corrected sub-surface readings. The subsurface percent light transparencies were calculated by comparing the at-depth 4-pi sensor reading with the deck-corrected sub-surface 4-pi reading. Each recorded light measurement was based on a 30-sec. average of sensor readings. All light sampling was performed between the hours of 10:00 AM and 2:00 PM.

Vegetation metrics included species present, estimated % coverage, and mean shoot height (cm). A 0.25-m² PVC quadrat was partitioned into four, 25-cm² grids using nylon rope attached to the frame. At each sampling station the quadrat was haphazardly placed four times by tossing it off the bow, stern, port and starboard sides of the survey vessel, after collection of the water quality and light data. A snorkel diver estimated the % cover within each of the four quadrat sections. Average shoot height was visually estimated in each section using a standard meter stick, ignoring the tallest and shortest shoots within the sampling area. Where sufficient station depth permitted, a digital camera was used to photograph a portion of each quadrat area sampled.

3.0 RESULTS

Appendix B contains the water quality, light, and vegetation data. Depth at Perdido Bay stations ranged from 1.16 m (PB9) to 0.58 m (PB6), with an average of 0.92 m (\pm 0.15). Depth at Sound stations ranged from 0.71 m (MS2) to 0.20 m (MS 8), with an average depth of 0.46 m (\pm 0.18). Perdido Bay bottom salinity ranged from 27.7 ppt (PB6) to 24.4 ppt (PB4) (Ave= 26.1±1.3). Bottom salinity at Sound stations ranged from 28.0 ppt (MS3/MS4) to 23.9 ppt (MS2) (Ave=26.6±1.3).

Light measurements in Perdido Bay ranged from 80.81% (PB6) to 34.15% (PB2) at bottom, averaging 54.38% (± 11.59). In the Sound, bottom light ranged from 81.34% (MS4) to 29.59% (MS1), and averaged 66.01% (± 19.02). For MS stations with shoalgrass only - three of the eight stations - average light at bottom was 47.8% (± 20.7).

Average seagrass coverage was 75.7% (\pm 14.9) at PB stations and 72.2% (\pm 18.0) at MS stations. For the MS stations with shoalgrass only, the average coverage was 52.5% (\pm 6.2). Canopy height averaged 20.1 cm (\pm 5.7) at PB stations and 16.9 cm (\pm 5.7) at MS stations. For MS stations with shoalgrass only, canopy height averaged 10.8 cm (\pm 3.6).

4.0 CONCLUSIONS

Tier 2 protocols are intended to provide assessment of physical habitat metrics, seagrass areal coverage, species composition, and vegetative condition. A monitoring program that includes Tier 2 ultimately is a method for change detection in habitat quality, and may be used to infer cause-effect relationships to explain those changes. Integrated with Tier 1 (landscape-scale) assessment, Tier 2 assessment has potential as a complementary tool in a comprehensive seagrass monitoring program for coastal Alabama. With sufficient data in terms of the number of stations and years sampled, Tier 2 assessments would be useful for monitoring during years when Tier 1 mapping is not performed.

Compared to lower Perdido Bay, Mississippi Sound has less shoreline development, boat traffic, and associated human disturbances. Moreover, the Sound is exposed to a more energetic hydrodynamic regime, as well as water and sediment inputs from Mobile Bay, and seagrass distribution has historically exhibited greater temporal variability compared to Perdido Bay. Resolving human-caused stress from natural effects, a primary goal of seagrass monitoring and management, is therefore likely to be problematic in the Sound.

5.0 ACKNOWLEDGEMENTS

Funding for this project was provided by the National Fish and Wildlife Foundation's Gulf Environmental Benefit Fund, and by the U.S. Fish and Wildlife Service, Department of the Interior through the Coastal Impact Assistance Program (CIAP). The CIAP is funded by qualified outer continental shelf oil and gas revenues.

6.0 **REFERENCES CITED**

Neckles, H.A., B.S. Kopp, B.J. Peterson, and P.S. Pooler, 2012. Integrating Scales of Seagrass Monitoring to Meet Conservation Needs. Estuaries and Coasts, 35:23–46.

APPENDIX A – Station Location Maps

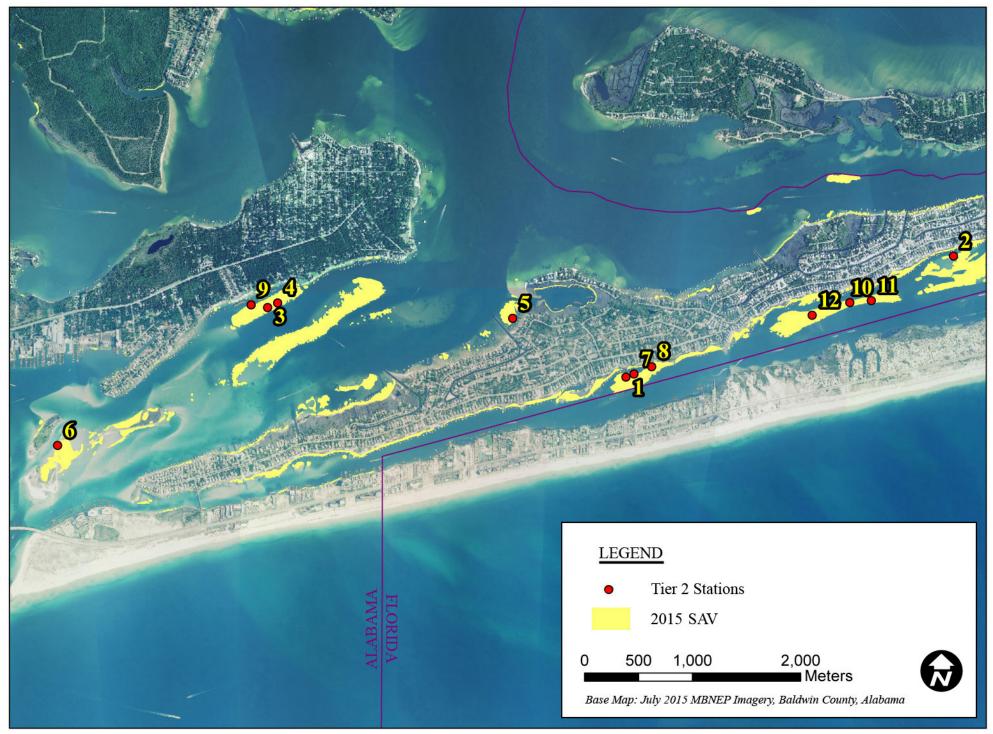


Figure 1. 2015 Tier 2 SAV monitoring stations, Perdido Bay.

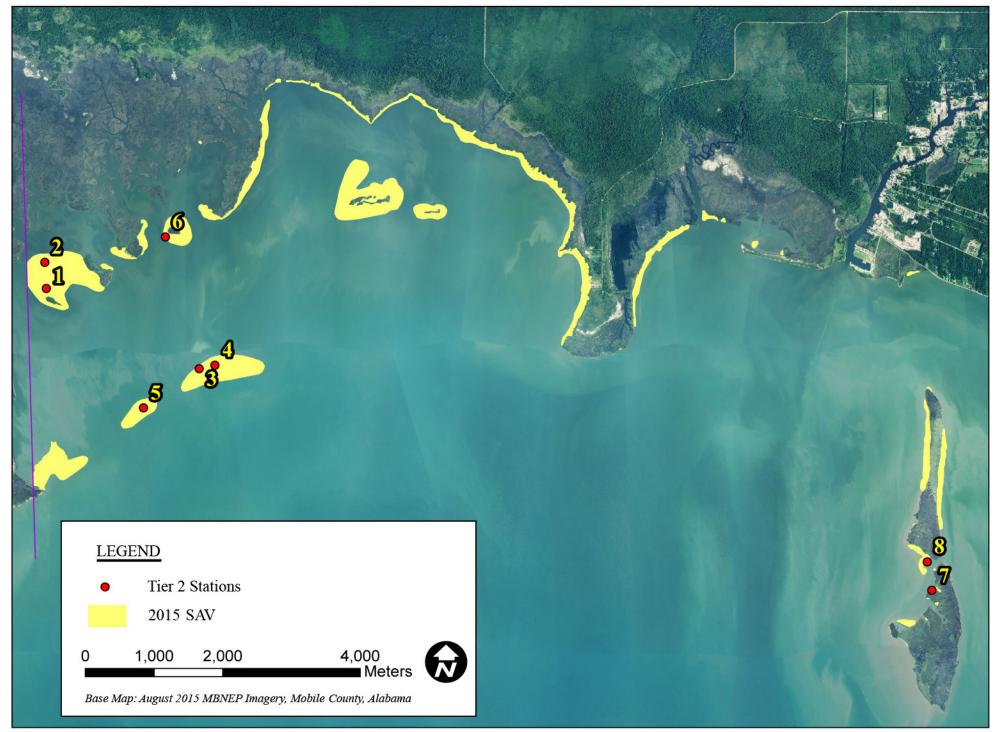


Figure 2. 2015 Tier 2 SAV monitoring stations, Mississippi Sound.

APPENDIX B - Water Quality, Light, and Vegetation Data

Perdido Bay Water Quality								
Station	Date/Time	Depth m	Temp C°	SpCond mS/cm	Salinity ppt	pН	ODO%	ODO Conc. mg/L
PB1: Bottom	8/19/15 12:27	0.85	30.2	42.84	27.4	8.2	96.8	6.3
Surface	8/19/15 12:29	0.15	30.3	42.92	27.5	8.2	141.4	9.2
PB2: Bottom	8/20/15 11:00	0.94	29.6	39.26	24.9	8.0	105	7.0
Surface	8/20/15 11:01	0.06	29.8	39.31	24.9	8.0	102	6.8
PB3: Bottom	8/19/15 9:12	1.0	28.9	38.72	24.5	7.9	91.8	6.2
Surface	8/19/15 9:13	0.06	28.9	38.56	24.4	7.9	88.1	5.9
PB4: Bottom	8/19/15 9:26	0.98	29.0	38.58	24.4	8.0	100.4	6.8
Surface	8/19/15 9:27	0.03	28.9	38.15	24.1	8.0	91.5	6.2
PB5: Bottom	8/19/15 10:11	1.1	29.1	39.9	25.4	8.1	107.2	7.2
Surface	8/19/15 10:12	0.18	29.2	38.19	24.2	8.0	100	6.7
PB6: Bottom	8/19/15 8:37	0.58	28.7	43.25	27.7	7.6	74.2	4.9
Surface	8/19/15 8:39	0.09	28.8	41.63	26.6	7.9	94.7	6.3
PB7: Bottom	8/19/15 12:51	0.98	29.9	42.84	27.4	8.1	120.1	7.8
Surface	8/19/15 12:52	0.09	30.5	42.9	27.5	8.1	118.4	7.6
PB8: Bottom	8/19/15 13:19	0.82	30.4	42.88	27.4	8.1	138.8	9.0
Surface	8/19/15 13:20	0.06	30.4	42.89	27.4	8.1	127.6	8.2
PB9: Bottom	8/19/15 9:47	1.16	29.0	38.98	24.7	8.0	91.9	6.2
Surface	8/19/15 9:48	0.06	29.1	38.77	24.6	8.0	91.7	6.2
PB10: Bottom	8/20/15 10:06	0.91	29.6	41.4	26.4	8.0	104.5	6.9
Surface	8/20/15 10:07	0.03	29.5	40.48	25.8	8.1	100.6	6.7
PB11: Bottom	8/20/15 11:13	0.91	30.1	40.7	25.9	8.2	158.8	10.4
Surface	8/20/15 11:16	0.03	30.1	40.04	25.4	8.1	107.2	7.0
PB12: Bottom	8/20/15 11:40	0.82	30.2	41.65	26.6	8.1	106.6	6.9
Surface	8/20/15 11:42	0.03	30.3	40.66	25.9	8.0	113.9	7.4

Perdido Bay Water Quality

Station	Donth	Deck	4π	Deck	4π	% Light at
Station	Depth	Sensor	Sensor	correction	(Corrected)	depth
	Subsurface	1677.5	1803	100.00%	1803.00	100.00%
PB1	0.5m	1757	1420.5	104.74%	1888.45	75.22%
	Bottom	1845.5	1095.5	110.01%	1983.57	55.23%
	Subsurface	1183.55	1342	100.00%	1342.00	100.00%
001	0.5m	996.2	798.05	84.17%	1129.57	70.65%
PB2	1.0m	829.75	402.75	70.11%	940.83	42.81%
	Bottom	802.35	310.85	67.79%	909.77	34.17%
	Subsurface	1889.5	2019.5	100.00%	2019.50	100.00%
PB3	0.5m	1928.5	1513	102.06%	2061.18	73.40%
	1.0m	1378.15	756.55	72.94%	1472.97	51.36%
	Subsurface	1887	2025	100.00%	2025.00	100.00%
PB4	0.5m	1890	1497.5	100.16%	2028.22	73.83%
	Bottom	1844	1103.5	97.72%	1978.86	55.76%
	Subsurface	1524.5	1755	100.00%	1755.00	100.00%
PB5	0.5m	1611	1311.5	105.67%	1854.58	70.72%
	1.0m	1621	860.1	106.33%	1866.09	46.09%
PB6	Subsurface	1743	1942	100.00%	1942.00	100.00%
PD0	0.5m	1731.5	1559	99.34%	1929.19	80.81%
	Subsurface	1994.5	2135	100.00%	2135.00	100.00%
PB7	0.5m	2046.5	1683	102.61%	2190.66	76.83%
	1.0m	2076	1095	104.09%	2222.24	49.27%
	Subsurface	1635.5	1723	100.00%	1723.00	100.00%
PB8	0.5m	1626	1217	99.42%	1712.99	71.05%
	Bottom	1531.5	1006.35	93.64%	1613.44	62.37%
	Subsurface	1829	1973.5	100.00%	1973.50	100.00%
PB9	0.5m	1753	1464	95.84%	1891.50	77.40%
	1.0m	1805	989.75	98.69%	1947.60	50.82%
	Subsurface	1229.05	1396.5	100.00%	1396.50	100.00%
PB10	0.5m	1670	1429.5	135.88%	1897.53	75.33%
	Bottom	1655	1041	134.66%	1880.48	55.36%
	Subsurface	1396.5	1490	100.00%	1490.00	100.00%
PB11	0.5m	1481	1231.6	106.05%	1580.16	77.94%
	Bottom	1479	727.55	105.91%	1578.02	46.11%
	Subsurface	1999.5	2128	100.00%	2128.00	100.00%
PB12	0.5m	2022.5	1655	101.15%	2152.48	76.89%
	Bottom	2011.5	1396.5	100.60%	2140.77	65.23%

Perdido Bay Light Measurements

Peraido E	Bay Vegetation			1
~ .	Species			Canopy
Station	composition	% C	overage	Height (cm)
		Q1	75	26
PB1	Halodule wrighii	Q2	60	20
I D I	maioune wrighti	Q3	85	25
		Q4	90	26
		Q1	60	17
PB2	Halodule wrighii	Q2	80	21
		Q3	50	17
		Q4	60	21
		Q1	70	10
PB3	Haladula unichii	Q2	65	12
	Halodule wrighii	Q3	75	14
		Q4	90	15
		Q1	60	8
PB4		Q2	50	9
	Halodule wrighii	Q3	80	13
		Q4	50	8
	Halodule wrighii	Q1	75	13
PB5		Q2	80	16
		Q3	85	21
		Q4	80	20
		Q1	98	22
PB6	TT 1 1 1 . 1	Q2	98	22
	Halodule wrighii	Q3	98	18
		Q4	98	19
		Q1	75	25
PB7	Halodule wrighii	Q2	95	30
		Q3	70	26
		Q4	80	28
		Q1	75	17
PB8	TTTTTTTTTTTTT		90	22
- 20	Halodule wrighii	Q2 Q3	90	28
		$\overline{Q4}$	90	26
		Q1	90	18
PB9			80	19
1.07	Halodule wrighii	Q2 Q3	95	20
		$\overline{Q4}$	98	20
PB10	Halodule wrighii	Q1	70	20
1 0 10		$\overline{Q2}$	70	20
		$\frac{Q^2}{Q^3}$	70	20
		رې د ب	15	20

Perdido Bay Vegetation

		Q4	70	22
	Halodule wrighii	Q1	90	27
PB11		Q2	75	31
		Q3	60	26
		Q4	50	21
		Q1	60	16
PB12	Halodule wrighii	Q2	65	24
	maioaule wrighii	Q3	50	16
		Q4	60	21

Mississippi Sound water Quality								
Station	Date/Time	Depth	Temp	SpCond	Salinity	рН	ODO%	ODO Conc
Station	Date/ Time	m	С	mS/cm	ppt		00070	mg/L
MS1: Bottom	8/25/15 10:52	0.68	30.0	41.36	26.4	7.9	83.2	5.4
Surface	8/25/15 10:54	0.04	30.0	41.1	26.2	8.0	91.2	6.0
MS2: Bottom	8/25/15 11:17	0.71	30.0	37.88	23.9	8.0	90.9	6.0
Surface	8/25/15 11:18	0.06	30.1	39.45	25.0	7.9	89.6	5.9
MS3: Bottom	8/25/15 12:21	0.44	30.2	43.71	28.0	8.2	109.7	7.1
Surface	8/25/15 12:22	0.03	30.2	43.79	28.1	8.2	112.4	7.3
MS4: Bottom	8/25/15 12:45	0.42	30.7	43.74	28.0	8.3	140.8	9.0
Surface	8/25/15 12:46	0.04	30.7	43.75	28.0	8.3	141.4	9.1
MS5: Bottom	8/25/15 13:14	0.58	30.8	41.78	26.6	8.2	99.5	6.4
Surface	8/25/15 13:16	0.05	30.8	41.81	26.7	8.2	113.1	7.3
MS6: Bottom	8/25/15 13:39	0.34	31.5	40.95	26.0	8.2	111.3	7.1
Surface	8/25/15 13:40	0.00	31.6	41.09	26.1	8.2	137.3	8.8
MS7: Bottom	9/2/15 12:39	0.30	30.6	42.65	27.3	7.8	114.1	7.4
Surface	9/2/15 12:41	0.02	30.7	42.7	27.3	7.9	117.3	7.6
MS8: Bottom	9/2/15 13:03	0.20	31.4	41.79	26.6	8.2	124	7.9
Surface	9/2/15 13:05	0.05	31.5	41.81	26.6	8.3	139.2	8.9

Mississippi Sound Water Quality

Station	Depth	Deck Sensor	4π Sensor	Deck correction	4π (Corrected)	% Light at depth
	Subsurface	1598.5	1873	100.00%	1873.00	100.00%
MS1	0.5m	1604.5	742.15	100.38%	1880.03	39.48%
	Bottom	1606	556.8	100.47%	1881.79	29.59%
MS2	Subsurface	1743	1906.5	100.00%	1906.50	100.00%
W152	0.5m	1740.5	829.35	99.86%	1903.77	43.56%
MS3	Subsurface	1839.5	2040	100.00%	2040.00	100.00%
N155	Bottom	1836.5	1523.5	99.84%	2036.67	74.80%
MS4	Subsurface	1859.5	2011.5	100.00%	2011.50	100.00%
M154	Bottom	1869	1644.5	100.51%	2021.78	81.34%
MS5	Subsurface	1858	1849.5	100.00%	1849.50	100.00%
W155	Bottom	1859.5	1292.5	100.08%	1850.99	69.83%
MS6	Subsurface	1816.5	2007.5	100.00%	2007.50	100.00%
W150	Bottom	1815	1411.5	99.92%	2005.84	70.37%
MS7	Subsurface	1849.5	2026	100.00%	2026.00	100.00%
MS/	Bottom	1853	1584.5	100.19%	2029.83	78.06%
MS8	Subsurface	1839.5	1929	100.00%	1929.00	100.00%
10138	Bottom	1837.5	1552	99.89%	1926.90	80.54%

Mississippi Sound Light Measurements

Mississippi Sound Vegetation

	Species			Canopy
Station	composition	% C	Coverage	Height (cm)
MS1	Halodule wrighii	Q1	50	17
		Q2	60	14
		Q3	50	10
		Q4	50	12
MS2	Halodule wrighii	Q1	50	8
		Q2	50	10
		Q3	50	7
		Q4	50	6
MS3	Ruppia maritima	Q1	90	22
	Halodule wrighii	Q2	80	23
		Q3	90	22
		Q4	75	24
MS4	Ruppia maritima	Q1	80	17
	Halodule wrighii	Q2	95	16
		Q3	90	18
		Q4	75	23
MS5	Ruppia maritima	Q1	60	16
	Halodule wrighii	Q2	80	24
		Q3	75	24
		Q4	60	18
MS6	Halodule wrighii	Q1	50	14
		Q2	50	8
		Q3	70	8
		Q4	50	15
MS7	Ruppia maritima	Q1	90	20
		Q2	95	23
		Q3	95	21
		Q4	90	24
MS8	Ruppia maritima	Q1	85	19
		Q2	90	21
		Q3	90	18
		Q4	95	20